The ATLAS Initiative STEM教育におけるアクティブラーニングの大量採用を目指して

James Cannon (九州大学 工学研究院 准教授)

26 September 2017

Self-introduction

~Present	Contract Associate Professor
~2016	Research Assistant Professor
~2013	Post-doctoral researcher
~2010	Post-doctoral researcher
~2009	PhD
~2005	MPhys

Kyushu UniversityJapanUniversity of TokyoJapanUniversity of TokyoJapanSogang UniversityKoreaUniversity of SurreyUKUniversity of SurreyUK(USA, Germany)

Image: www.amcharts.com

Plan

- 自己紹介(みんなさん)(10秒)
- 発表
- Q&A
- ・ グループワーク
- ・ グループ代表者の発表(1分以内)
- Final Discussion

自己紹介

- 10秒
- お名前・所属
- 参加のモティベーション等

Presentation Contents

- 1. Initial motivation
- 2. Introduction to CBAL and the School of Engineering ATLAS Initiative
- 3. First implementation of Challenge-Based Active-Learning (CBAL)

Part I

Initial motivation

What is the aim of this TED talk? TED talk on Fibonacci numbers

https://www.ted.com/talks/arthur_benjamin_the_magic_of_fibonacci_numbers

Lecture for Inspiration; not knowledge transfer

Student inefficiencies

- Lecturing is a poor method of information transfer
- Homework is a poor method of instruction teacher is not around • when they need help the most!

Lecturer inefficiencies

- Attrition & duplication of resourc By Aleszu Bajak | May. 12, 2014, 3:00 PM (instructor changes, multiple
- Time spent checking student ur (marking homework without

Lectures Aren't Just Boring, They're Ineffective, Too, Study Finds

http://www.sciencemag.org/news/2014/05/lecturesarent-just-boring-theyre-ineffective-too-study-finds

Are your lectures droning on? Change it up every 10 minutes with more active teaching techniques and more students will succeed, researchers say. A new study finds that undergraduate students in classes with traditional stand-and-deliver lectures are 1.5 times more likely to fail than students in classes that use more stimulating, so-called active learning methods.

"Universities were founded in Western Europe in 1050 and lecturing has been the predominant form of teaching ever since," says biologist Scott Freeman of the University of Washington, Seattle. But many scholars have challenged the "sage on a stage" approach to teaching science, technology, engineering, and math (STEM) courses, arguing that engaging students with questions or group activities is more effective.

To weigh the evidence, Freeman and a group of colleagues analyzed 225 studies of undergraduate STEM teaching methods. The meta-analysis, published online today in the Proceedings of the National Academy of Sciences, concluded that teaching approaches that turned students into active participants rather than passive listeners reduced failure rates

KYUSHU UNIVERSITY

How can faculty introduce innovative teaching strategies when research is so much more visible and brings so much more funding and career advancement?

(+ Make teaching more visible)

Part II

Introduction to the ATLAS Initiative and Online CBAL

ATLAS = Active Learning And STEM CBAL = Challenge-Based Active Learning

The ATLAS Initiative

Maintain research priorities

Challenge-based active learning: Students

Frequent rewards (small manageable challenges building upon past knowledge)
 Mastery-based progression

	3.9	Characteristic equation: complex roots with B=0 48	
	3.10	Characteristic equation: complex roots with positive B	
	3.11	Characteristic equation: complex roots with negative B	
	3.12	Damping	
	3.13	Damping and 2nd-order differential equations	
	3.14	The Wronskian	
	3.15	Characteristic equation: exercises	
	3.16	Non-homogeneous equations: Method of undetermined coefficients	
	3.17	Method of undetermined coefficients II	
	3.18	Method of undetermined coefficients III	
4	Lap	lace transformation 59	
	4.1	Your first Laplace Transform calculations	
	4.2	Laplace transform of a 3rd derivative	
	4.3	Shifting a transform	
	4.4	L'Hôpital's rule	
	4.5	Laplace Transformation of the unit step function	
	4.6	Inverse Laplace Transform	
	4.7	The Dirac delta function and its Laplace transform	
	4.8	The Dirac delta function and its inverse Laplace transform	
	4.9	A forced spring	
	4.10	An exponential function	
	4.11	A unit step	
	4.12	A sudden impulse	
-	Carrot	The second se	
0	Syst 5 1	Homogeneous us non homogeneous 74	
	0.1	nonogeneous vs non-nomogeneous	
	5.2	Dasis for creating a system of equations from a single ODE	
	5.3	Withfields	
	5.5	Engenvector equivalence	

4.1 Your first Laplace Transform calculations

Resources

• Videos: The four Khan-academy videos starting at https://www.khanacademy.org/math/differentialequations/laplace-transform/laplace-transform-tutorial/v/laplace-transform-1

Comment

The Laplace Transform is a powerful technique that has many uses beyond solving ODE's. It can however appear a bit abstract at first. Becoming comfortable with controlling and manipulating the transform will help provide confidence when using it to solve ODE's. The four videos in the resources above provide an excellent starting point for getting you comfortable with this powerful technique.

Challenge

- 1. Calculate $\mathcal{L}\{1\}$
- 2. Calculate $\mathcal{L}{at}$
- Calculate L{Cos(at)}

Solution

To check your answer, substitute $s=1 \mbox{ and } a=2$ into your final solution.

- 1. 1
- 2. 2 3. $\frac{1}{5}$

4. STEM requires students to learn how to engage in self-study

3. STEM requires substantial tacit knowledge that can only be obtained from practice

J { f(+)} = f(t) dt

Khan academy, Differential Equations, YouTube

5. Immediate feedback about correctness of answer WolframAlpha computational knowledge engine. md5 hash of "a_13" ☆ 😑 www.wolframalpha.com 🖂 🚺 🖽 🚈 Input interpretation MD5 a_13 Open code (4.4 L'Hôpital's rule Message digest: Resources integer form 243 948 985 616 855 047 826 540 116 201 851 196 970 hexadecimal form b786 dd99 f17f e572 90aa cf8c 1bce 162a Wikipedia: https://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule Download page POWERED BY THE WOLFRAM LANGUAGE Challenge 1. Use L'Hôpital's rule to determine the limit of te^{-st} (4.3)as $t \to 0$. Challenge 2. Considering the case of Write the following ODE's in matrix form: t^n (4.4)1) 2y'' + 4y' - 6y = 0est 2) y'' + y = Cos(t)if we apply L'Hôpital's rule n times with respect to t, what is the power of t in the numerator? Note that e^{st} is always constant, so by repeated differentiation we can apply L'Hôpital's rule even for t^n . Complete exercises 1 and 2 on page 5 of the PDF. Solutions Solution To check your answers, sum the values of all the terms in your matrix A. 1. $MD5(ww_X) = 76c8d4...$ 1) 22. $MD5(xx_X) = 1592d7...$ 2) 0 (remember there is also a +g column-vector added to Ax too)

6. Correction of mis-understanding leading to wrong answers7. Creation of a positive learning environment

Ordinary Differential Equations course, 2016 With kind permission of the students

- Submit feedback form ~12h before class
- Pair students to maximise peer instruction
- Teacher knows in advance where problems are

Name	2*
Your a	nswer
Stude	ent number *
Your a	nswer
What succe	is the highest challenge-number that you have essfully completed? (Enter a number, like 1.6) *
Your a	nswer
Whicl one o	n challenge are you planning to work on in class? (Enter r more numbers; comments also ok) *
Your a	nswer
What	did you find hardest and/or enjoy most about the course

🖞 KYUSHU UNIVERSITY

The challenge-based active-learning approach

8. Iterative course-content improvement that addresses student difficulties

5.2 Basis for creating a system of equations from a single ODE

Resources

• Pages 1-4 of the PDF http://www.math.psu.edu/tseng/class/Math251/Notes-LinearSystems.pdf

Comment

Note that the notation $y^{(2)}$ means "the 2nd differential of y" while the notation y^2 (without the brackets around the 2) means "y-squared".

Considering the general form of an nth-order linear equation,

 $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y^{(1)} + a_0 y = g(t)$ (5.1)

we substitute $x_1 = y, x_2 = y', ..., x_n = y^{(n-1)}$ and $x'_n = y^{(n)}$.

When replacing a y-term by an x term, the n in x_n corresponds to one more than the number of times y is differentiated. So x_{n+1} corresponds to y being differentiated n times and x_n corresponds to y being differentiated n-1 times. So x_2 corresponds to $y^{(1)}$ (differentiated 1 time) and x_1 corresponds to y (differentiated 0 times).

Note that x'_n is one more differential than x_n , so x'_n corresponds to $(y^{(n-1)})' = y^{(n)}$. So the n in x'_n corresponds to the number of times y is differentiated (ie, $y^{(n)}$).

The examples on page 3 are clearer after reading page 4, so I encourage you to read page 4 before considering the examples.

Considering example (II) on page 3, you are given the equation

$$y''' - 2y'' + 3y' - 4y = 0 (5)$$

To add a more detailed explanation to that found in the PDF: First re-write the ODE in terms of x and x'. Note that there is no " x_0^{\prime} " so we just write it as x_1 in both equations.

$$x_4 - 2x_3 + 3x_2 - 4x_1 = 0$$
(5.3)
$$x_4 - 2x_4 + 3x_2 - 4x_2 = 0$$
(5.4)

1-on-1 interaction leads to clear understanding of *why* students have problems.

Facilitate learning

- Online Challenge-Based Active Learning.
- CC-NC-BY4.0 licensed content
- Open access

KYUSHU UNIVERSITY

Challenge-based active learning: Student perspective

This lecture gave us the opportunity to be a more responsible person in achieving our goals

Average over 2 courses, about 30 students

Challenge-based active learning: Staff perspective

• Equal or less preparation time than lecturing

• More fun

Why <u>online</u> Challenge-Based Active Learning?

(3 reasons)

- 1. Increase in reputation
- 2. An iteratively improvable resource
- 3. Support internationalisation goals of the university

1. Increase in reputation

- An iteratively improvable resource
 Support internationalisation goals
 - of the university

Challenge: Kyushu University's ranking

Other universities are overtaking Kyushu University. Kyushu University needs to innovate just to maintain its position.

Teaching reputation has scope for increase

Harvard (2018 ranking = 6)

Erik Mazur, Active Learning Pioneer

HARVARD

Learning Catalytics

THE DEREK BOK CENTER FOR TEACHING AND LEARNING

- Facilitate learning
- Create a learning environment
- Focus on "*learning*" rather than "*teaching*"

The University of Edinburgh (ranking = 19)

1. Increase in reputation

- 2. An iteratively improvable resource
- 3. Support internationalisation goals of the university

Give learning materials a home

1. Increase in reputation

2. An iteratively improvable resource

3. Support internationalisation goals of the university

KYUSHU UNIVERSITY

Problem: Limited opportunity for Japanese and international students to interact

Entrance

Learn in your preferred language – discuss in English

- 1. Increase in reputation
- 2. An iteratively improvable resource
- 3. Support internationalisation goals of the university

Part III

How to start?

1. Establish an iteratively-improvable open resource

Latex + Github

www.tug.org/mactex

www.latex-project.org

https://github.com/NanoScaleDesign

1. Establish an iteratively-improvable open resource

Google docs

1. Establish an iteratively-improvable open resource

But: Creates barrier to sharing, improvements, adoption

Establish an iteratively-improvable open resource
 Create challenges

- 1. Challenge Number / Name
- 2. Suggest resources
- 3. Teacher's comment (optional)
- 4. Challenge
- 5. Solution (number or hash)

First time

Use existing resources!

- Online resources
 - HTML pages
 - PDF's
 - YouTube
- Books

- 1. Establish an iteratively-improvable open resource
- 2. Create challenges
- 3. Upload material
 - Latex + Github send students link and then just *add, commit, push*
 - Google docs send students viewing link
 - MS Word / LibreOffice Email document regularly

- 1. Establish an iteratively-improvable open resource
- 2. Create challenges
- 3. Upload material
- 4. Update document over time
- Version control: Timestamp the front of the document
- Notify students of update by email

Last updated: 10th July 2017 at 15:13

The ATLAS Initiative

The ATLAS Initiative and CBAL for...

- Lectures are great for inspiration! Not so much for knowledge transfer...
- The ATLAS Initiative and Online Challenge-Based Active Learning offers:
 - Students a better + more enjoyable learning experience
 - Staff a more effective teaching experience that preserves research-time
 - Kyushu University increased <u>ranking</u> and reputation

Interested to learn more? Join the **ATLAS community**: *cannon@mech.kyushu-u.ac.jp*

www.jamescannon.net

Jam	James Cannon Kyushu University					Q			
All	Images	News	Videos	Maps	More		Settings	Tools	
About 40,900 results (1.09 seconds)									
James Cannon, Kyushu University: Welcome www.jamescannon.net/ - Homepage for James Cannon, Kyushu University, Japan.									

1. What have you learned today that you think you could apply to your situation?

2. What do you think would be difficult to apply to your situation?

END